I am trying to plot the time track of contour plot, something like this:
Here is the example code:
erfx[x_] = Erf[(x - .9)/.1] - Erf[(x - 1)/.1]; erfy[y_] = Erf[(y - 9.9)/.1] - Erf[(y - 10)/.1]; erfxy[x_, y_] = 22.783336 erfx[x] erfy[y]; ic = {u[0 , x, y] == erfxy[x, y]}; bc = {DirichletCondition[u[t, x, y] == 0, x == 0 || y == 0]}; \[CapitalOmega] = ImplicitRegion[0 <= x && y >= 0 && x + y <= 12, {x, y}]; \[Alpha] = {1, 2 x}; d = {{1, 0}, {0, 1}}; op = D[u[t, x, y], t] + Inactive[Div][ Inactive[Plus][-d . Inactive[Grad][u[t, x, y], {x, y}], Inactive[Times][-d.\[Alpha], u[t, x, y]]], {x, y}]; ndsol = NDSolveValue[{op == 0, ic, bc}, u, {x, y} \[Element] \[CapitalOmega], {t, 0, 5}, Method -> {"FiniteElement", "MeshOptions" -> { MaxCellMeasure -> 0.04}}]; Table[ ContourPlot[ ndsol[tt, x, y], {x, y} \[Element] ndsol["ElementMesh"], PlotPoints -> 10, Contours -> 10, PlotRange -> {-.001, 1}, Mesh -> None, ContourStyle -> None, ColorFunction -> ColorData[{"TemperatureMap", {0, 1 }}], ColorFunctionScaling -> False, Frame -> True, FrameStyle -> Directive[Thick, Black, 20], FrameLabel -> {"x(\[Mu]m)", "y(\[Mu]m)" }, ImageSize -> 400], {tt, {{.01, 0.05, 0.09, .1, .4, .5}}}]
I only managed to get something like this.
I believe with color scaling it’s possible visualize it . I was wondering if there is nicer way to do it. And also how could we add the legend in meaningful way, because the values differ by large amount? Thanks.