I have an equation: $ $ y[x]=\dfrac{b}{\sqrt{|k(x)|}}e^{-\int^x k(x’)dx’}\qquad\text{(1)}$ $ Where $ $ k(x)=\sqrt{\dfrac{w^2}{c^2}+\left(\dfrac{w(w_p)^2}{c^2v_t h}\right)(A1)}$ $ $ $ A1=\dfrac{1}{\sqrt{\pi}}\int\dfrac{e^{-y^2}}{y-\dfrac{w+2iR-om}{v_t(\dfrac{w}{c}(1-\dfrac{(1-\dfrac{x}{L})}{1+\dfrac{w_c}{w}})^{\dfrac{1}{2}})}}dy$ $ This expression $ \int^x \sqrt{\dfrac{w^2}{c^2}+\left(\dfrac{w(w_p(x’))^2}{c^2v_t h(x’)}\right)A1(x’)}dx’$ … (2) means that: At first I must solve $ \int^x \sqrt{\dfrac{w^2}{c^2}+\left(\dfrac{w(w_p(x’))^2}{c^2v_t h(x’)}\right)A1(x’)}dx’$ , then change $ x$ to $ x’$ . But it has an error. Why? Because IRead more