Given a set of vectors $ V = \{ \mathbf{v}_1, \ldots, \mathbf{v}_n \} \subset \mathbb{R}^d$ , I want to project a point $ \mathbf{x}_0 \in \mathbb{R}^d$ onto the convex hull $ \text{conv}(V)$ of the vectors in $ V$ . I know this is a quadratic program, to find $ \mathbf{z}^*$ that minimizes $ \frac{1}{2}\|\mathbf{x}_0 –Read more