Define the $ \tau(k)$ the following, $ $ \Delta(x)=x\prod_{n=1}^\infty(1-x^n)^{24}=\sum_{k=1}^\infty\tau(k)x^k$ $ . Let $ a(n) = \tau(n)$ mod $ n-1$ for $ n > 1$ . For example 1, $ a(2) = 0, a(3) = 0, a(4) = 1, a(5) = 2$ . Surprisingly, there are no integer $ n$ such that $ a(n) = 1$Read more