Let $ (\Omega,\mathcal A,\operatorname P)$ be a complete probability space $ (\mathcal F_t)_{t\ge0}$ be a complete and right-continuous filtration on $ (\Omega,\mathcal A)$ $ U$ be an infinite-dimensional separable $ \mathbb R$ -Hilbert space $ Q$ be a nonnegative and self-adjoint nuclear operator on $ U$ $ U_0:=Q^{1/2}U$ be equipped with $ $ \langle u_0,v_0\rangle_{U_0}:=\langleRead more