Let $ (Z,W)$ be a compact Hausdorff space and $ \tilde X\subseteq Z$ an open subset of $ Z$ . Furthermore let $ h:(\tilde X, W_{|\tilde X}) \to (X, \mathcal T)$ be a homeomorphism. $ Y:=X \cup \{\infty\}$ How can I show that $ f: Z \to Y, f(x)=h(x)$ for $ x \in \tilde X$Read more