Let $ n \in \mathbb{N}$ and $ p \in [1,\infty]$ be fixed and endow $ \mathbb{R}^n$ with the $ p$ -norm $ \|\cdot\|_p$ . For every matrix $ A \in \mathbb{R}^{n \times n}$ we denote the operator norm of $ A$ as an operator on $ \mathbb{R}^n$ by $ \|A\|_p$ , too. Moreover, let $Read more