Given any $ g \in L^\infty(\mathbb{R})$ , define the associated multiplier operator $ T_g \colon L^2(\mathbb{R}) \to L^2(\mathbb{R})$ by $ $ \mathcal{F}(T_g f) \ = \ g.\mathcal{F}f $ $ where $ \mathcal{F}$ denotes the Fourier transform. Definition. We will say that a function $ f \in L^\infty(\mathbb{R})$ is nice if for every bounded $ gRead more