Let $ \mathbb{A}^{n}$ be the $ n$ -dimension affine space over a field $ k$ and $ H$ an arbitrary hypersurface of $ \mathbb{A}^{n}$ . Does there exist a hyperplane $ P$ such that $ P \cap H =\emptyset$ ?Read more
Let $ \mathbb{A}^{n}$ be the $ n$ -dimension affine space over a field $ k$ and $ H$ an arbitrary hypersurface of $ \mathbb{A}^{n}$ . Does there exist a hyperplane $ P$ such that $ P \cap H =\emptyset$ ?Read more