Let $ n\in\mathbb{N}$ and $ p,q\in(1,+\infty)$ with $ p^{-1}+q^{-1}=1$ . Consider isometric embedding between $ \mathbb{C}$ -Banach spaces $ $ \rho:\ell_p^n\to\ell_\infty(S, \ell_1^n),x\mapsto(f\cdot x)_{f\in S} $ $ where $ S$ is a countable dense subset of the unit sphere in $ \ell_q^n$ . I would like to know if this embedding gives a contractively complemented copyRead more