Say $ X$ is a smooth projective variety over $ \mathbf{C}$ , and $ \mathcal{X} = X^{\rm an}$ its $ \mathbf{C}$ -analytic space. For what integers $ i,d$ is the Deligne cohomology $ H^i_{\mathcal{D}}(\mathcal{X},\mathbf{Z}(d))$ of $ \mathcal{X}$ , finitely generated/a compact group in some (any, I don’t know) suitable sense?Read more