Use 50% Discount for all private proxies!
Unlimited possibilities with ExtraProxies

Some questions about a special semiscalar product

Define the semiscalar product [x,y] by $ $ [x,y]=\inf_{t>0}\frac{1}{2t}[||x+ty||^2-||x||^2].$ $ E be an n.v.s. I donot know how to prove that

1.$ [x,\lambda x+\mu y]=\lambda||x||^2+\mu[x,y]\ \forall x,y\in E,\lambda\in\mathbb{R},\forall \mu >0.$

2.$ [\lambda x,\mu y]=\lambda\mu[x,y],\forall x,y\in E,\forall\lambda,\mu\geq 0$

I probably understand that this semiscalar product is similar to an inner product, but I only have trigonometric inequalities for its norm, how do I prove that this product is linear?

Related Posts
DreamProxies 100 Proxies 200 Proxies 400 Proxies 1000 Proxies 2000 Proxies 5000 Proxies 10000 Proxies