Consider a function
f[x_, Z_, \[Alpha]_, mN_, q_, R_, S_] = Assuming[mN > 0 && x > 0, 9*\[Alpha]*Z^2/(2*Pi)*((1 + (1 - x)^2)/x)* (q^2 - x^2 mN^2)/q^4* SphericalBesselJ[1, R*q]^2/(R*q)^2* Exp[-q^2*S^2]];
It is defined in the domain $ $ \text{max}[2\cdot 10^{-5}, x\cdot m_{N}]< q< q_{\text{max}} = 4.49/5, \quad 10^{-9}<x <q_{\text{max}}/m_{N} $ $ I’m trying to obtain the interpolation of numerical integral $ $ \int \limits_{q_{\text{min}}}^{q_{\text{max}}}dq^{2}f[x,42,1/137,100,q,5,0.726] $ $ for the given value of x. Namely, I write
g1 = Table[{x, NIntegrate[ f[x, q, 42, 1/137, 100, 5, 0.726]*2*q, {q, Max[100*x, 2*10^-5], 4.49/5}]}, {x, 10^-9, 4.49/(5*100), 10^-4}]; g[x_] = Interpolation[g1 ][x]
Finally, I want to draw a plot of the function g[x]. I write
LogLogPlot[PhotonDFx[x], {x, 10^-9, 4.49/(5*100)}, PlotRange -> All]
And I see discontinuous plot. The point of discontinuity strongly depends on the table step size (I’ve tried from $ 10^{-7}$ to $ 10^{-2}$ ). From the other side, if I simply write
LogLogPlot[ NIntegrate[ Re[f[x, q, 42, 1/137, 100, 5, 0.726]]*2*q, {q, Max[100*x, 2*10^-5], 4.49/5}], {x, 10^-9, 4.49/(5*100)}, PlotRange -> All],
then the plot is smooth.
How to obtain correct interpolation?