I have a list of identities as follows.
list = Table[With[{e = i^k}, HoldForm[Sum[e, {i, 1, n}]]], {k, 5}]; Column[# == Factor[ReleaseHold[#]] & /@ list] // TeXForm
$ $ \begin{array}{l} \sum _{i=1}^n i=\frac{1}{2} n (n+1) \ \sum _{i=1}^n i^2=\frac{1}{6} n (n+1) (2 n+1) \ \sum _{i=1}^n i^3=\frac{1}{4} n^2 (n+1)^2 \ \sum _{i=1}^n i^4=\frac{1}{30} n (n+1) (2 n+1) \left(3 n^2+3 n-1\right) \ \sum _{i=1}^n i^5=\frac{1}{12} n^2 (n+1)^2 \left(2 n^2+2 n-1\right) \ \end{array} $ $
In order to allow the questions span across lines or pages, I have to remove the ratios by multiplying both sides with the smallest integers.
$ $ \begin{array}{l} 2\sum _{i=1}^n i= n (n+1) \ 6\sum _{i=1}^n i^2= n (n+1) (2 n+1) \ 4\sum _{i=1}^n i^3= n^2 (n+1)^2 \ 30\sum _{i=1}^n i^4= n (n+1) (2 n+1) \left(3 n^2+3 n-1\right) \ 12\sum _{i=1}^n i^5= n^2 (n+1)^2 \left(2 n^2+2 n-1\right) \ \end{array} $ $