I have a question about a Dirichlet form.
Let $ D$ be a open subset of $ \mathbb{R}^d$ . Then, we can define $ H^{1}(D)$ by \begin{equation*} H^{1}(D)=\{f \in L^{2}(D,dx):\frac{\partial f}{\partial x_i} \in L^{2}(D,dx),\,1\le i\le d\}. \end{equation*} It is well known that $ H^{1}(D)$ becomes a Hilbert space with inner norm \begin{equation*} (f,g)_{H}:=\mathcal{E}(f,g)+\int_{D}fg\,dx, \end{equation*} where $ \mathcal{E}(f,g):=\frac{1}{2}\int_{D}\frac{\partial f}{\partial x_i}\frac{\partial g}{\partial x_i}\,dx$ . Moreover, $ (\mathcal{E}, H^{1}(D))$ becomes a Dirichlet form on $ L^{2}(D,dx)$ . Hence, from a general theory of Dirichlet form, there exists a unique (non-positive) closed linear operator $ (L,\text{Dom}(L))$ such that \begin{equation*} (-Lf,g)=\mathcal{E}(f,g),\quad f \in \text{Dom}(L),\ g\in H^{1}(D). \end{equation*}
My question
If $ D =\mathbb{R}^d$ , I know $ \text{Dom}(L)=W^{2,2}(\mathbb{R}^d)$ . For a general open subset $ D$ , $ \text{Dom}(L)=W^{2,2}(D)$ ? If you know related results, please let me know.