If I have an extremely long list of simultaneous Partial Differential Equations (too long to manually write) that looks like
OutputCases=
\begin{align}\left\{v(1)^{(0,1)}(x,t)+r x-e^{\rho t}+t y,r x v(1)^{(1,0)}(x,t)-2 e^{\rho t} v(1)^{(1,0)}\(x,t)+\rho t e^{-\rho t} v(1)^{(1,0)}(x,t)+t y v(1)^{(1,0)}(x,t)+v(2)^{(0,1)}(x,t),\\text{OutputSizeLimit$ \grave{ }$ Skeleton}(22),\\rho t e^{-\rho t} v(2)^{(1,0)}(x,t) \left(v(5)^{(1,0)}(x,t)\right)^4+4 \rho t e^{-\rho t} v(3)^{(1,0)}(x,t) v(4)^{(1,0)}(x,t) \left(v(5)^{(1,0)}(x,t)\right)^3\+2 \rho t e^{-\rho t} \left(v(4)^{(1,0)}(x,t)\right)^3 \left(v(5)^{(1,0)}(x,t)\right)^2,\\rho t e^{-\rho t} v(3)^{(1,0)}(x,t) \left(v(5)^{(1,0)}(x,t)\right)^4+2 \rho t e^{-\rho t} \left(v(4)^{(1,0)}(x,t)\right)^2 \left(v(5)^{(1,0)}(x,t)\right)^3\right\},\end{align}
where I want to solve for $ v(1), \cdots, v(5)$ in DSolve with the list of equations==
$ \{0,\underbrace{\cdots}_{(23)},0\}$ is there any way to directly feed in this list to DSolve? My attempts to plug this in directly have failed and Mathematica’s documentation only suggests manually entering these terms. I tried both this and a recursive method, but neither has worked. Any suggestions would be much appreciated.