I am new in mathematica and I try to solve a set coupled ordinarial equations differential
sys = {S'[t] == (0.02* S[t] - ((0.02*S[t]^2)/10^+6)- ((0.02*S[t]*II[t])/10^+6) - S[t]*10^-4*V[t]), II'[t] == 10^-4*S[t]*V[t] - 0.01*II[t] - 0.0082*II[t], V'[t] == 100*10^-4*II[t] - 50*V[t], P'[t] == 0.0082*II[t] + P[t] - (1510416.6667*(P[t]^2)/(744047.619^2 + P[t]^2))- 1.3*10^-7*EE[t]*P[t] + (24 + 7.2*(1 - 0.9997))*Cp[t] - 0.5*10^-6*P[t]*A[t], CC'[t] == ((1510416.6667*P[t]^2)/(744047.619^2 + P[t]^2)) - 1.01*CC[t], EE'[t] == 1.36*10^4 - 0.0412*EE[t] + (((0.2988*10^8)*(Cp[t] + Ca[t]))/(2.02*10^7 + P[t])) - 1.3*10^-7*EE[t]*P[t] + (24 + 7.2*0.9997)*Cp[t] - 1.3*10^-7*L[t]*E[t] + 24*Ca[t] + 7.2*Ca[t] + 2*24*Ce[t] - 2*1.3*10^-7*EE[t]^2 + 7.2*Ce[t], A'[t] == 1.36*10^4 - 0.0412*A[t] - 0.5*10^-6*P[t]*A[t] + 10*L[t], L'[t] == 0.5*10^-6*P[t]*A[t] - 10*L[t] - 1.3*10^-7*L[t]*EE[t] + 24*Ca[t], Cp'[t] == 1.3*10^-7*EE[t]*P[t] - (24 + 7.2)*Cp[t], Ca'[t] == 1.3*10^-7*L[t]*EE[t] - (24 + 7.2)*Ca[t], Ce'[t] == 1.3*10^-7*EE[t]^2 - (24 + 7.2)*Ce[t], S[0] == 10^+6, II[0] == 0, V[0] == 10^+2, P[0] == 0, CC[0] == 0, EE[0] == 0, A[0] == 0, L[0] == 0, Cp[0] == 0, Ca[0] == 0, Ce[0] == 0};
I was solve these equations with Runge-Kutta 4 on MATLAB 2015b, and now I try to solve them with NDSolve on Mathematica 10.4, of this way:
s = NDSolve[sys, {S[t], II[t], V[t], P[t], CC[t], EE[t], A[t], L[t], Cp[t], Ca[t], Ce[t]}, {t, 0, 400}, Method -> {"ExplicitRungeKutta","DifferenceOrder" -> 4}]
The first error that I found consist in the preliminary results are wrong with respect to my own results
NDSolve::nlnum: “The function value {13599.7,2.95602*10^-21,1.21516*10^-16,4.83696*10^-6,5.27261*10^-12,13599.7 -4.83689*10^-22\ E[0.000449372],9777.22,2.03581*10^-11,0.0365214,-9777.31,-4888.63} is not a list of numbers with dimensions {11} at {t,A[t],Ca[t],CC[t],Ce[t],Cp[t],EE[t],II[t],L[t],P[t],S[t],V[t]} = {0.000449372,6.11141,0.,2.75044*10^-20,5.91719*10^-10,9.67377*10^-16,6.11141,4.45301,3.72068*10^-15,6.67451*10^-6,999996.,97.7735}.”
And then, I did want plot the findings with:
Plot[Evaluate[({P[t]} /. s) ],{t,0,400}]
InterpolatingFunction::dmval: “Input value {0.00817143} lies outside the range of data in the interpolating function. Extrapolation will be used.
I was try to improve it changing the accuracy, the method of solution, but always the outputs show me errors
I appreciate any help, best regards sincerely