Consider the following function in which * (super star) stands for complex conjugate (I have used “Quantum package” which recognizes *):
f=E^((-0.1 - 1.67033 I) t + (0.1 - 1.67033 I) u) (((0.5 - 0.329276 I) E^((0. + 3.34066 I) t) + (0.5 + 0.329276 I) E^((0. + 3.34066 I) u)) SuperStar[((0.5 - 0.329276 I) E^((-0.1 + 1.67033 I) t + (0.1 - 1.67033 I) u) + (0.5 + 0.329276 I) E^((-0.1 - 1.67033 I) t + (0.1 + 1.67033 I) u))] + (-0.598684 E^((0. + 3.34066 I) t) + 0.598684 E^((0. + 3.34066 I) u)) SuperStar[(-0.598684 E^((-0.1 + 1.67033 I) t + (0.1 - 1.67033 I) u) + 0.598684 E^((-0.1 - 1.67033 I) t + (0.1 + 1.67033 I) u))])
I want to integrate over this function with the assumption that t and u are real parameters. I have tried the followings, but none of them worked:
Integrate[f , {u, 0, t}, Assumptions -> Element[u | t, Reals]] Integrate[f , {u, 0, t}, Assumptions -> {t \[Element] Reals, u \[Element] Reals}] Integrate[f, {u, 0, t}, Assumptions -> t \[Element] Reals && u \[Element] Reals]